CSP Gen 3 Roadmap

Gas-Phase Receiver Technology Pathway

Background and Research Overview February 1st, 2017 Sacramento, CA

Gas-Phase (GP) Technology Overview

Gas-phase heat transfer fluid

- Behaves as an ideal gas
- Operates in the range of 60-120 bar
- Balances wall thickness requirements with heat transfer characteristics

Closed-loop configuration

- Uses gas circulators
- Enables high thermodynamic efficiency by allowing power cycle to accept heat at a high average temperature.
- Gas-to-gas heat exchanger between receiver/TES loop and s-CO2 power cycle loop.

Indirect thermal energy storage

- Secondary storage media
- Enables a variety of TES technologies

Power generation decoupled from production

- Allows the system to dispatch to demand or price spikes without affecting the energy collection subsystem.
- Simplifies operations, reduces grid costs, and improves project financial return

Receiver comprised of multiple parallel flow paths

Gas-Phase Receiver System with PCM Storage

Features of the GP Pathway

Advantages

Thermally stable

- No phase change
- Eliminates heat-trace, attrition, chemistry management equipment
- Simplifies system startup and shutdown
- Inert
 - Reduces corrosion
 - Minimal environmental or safety hazards
- Low cost and high thermal efficiency
 - 89-95% receiver, <200\$/kWt
- Builds on existing designs
- Simple primary heat-exchanger
- Enables advanced TES concepts

Challenges

- Inferior heat-transfer to liquids
 - Optimization of operating pressure
 - Transient response sensitivity
- Indirect TES technology
 - System integration
- Power consumption for fluid circulation
- Selection of appropriate pressure and temperature targets
 - Balance wall material cost with parasitic losses
- Flow path complexity

Why hasn't this been pursued more aggressively?

- Superior performance of liquid-phase HTF's at lower temperature
- Focus on air-Brayton hybridization and solar fuels for gas receiver technologies
- Insufficient motivation given limits of steam Rankine cycle
- Insufficient apatite for long-range CSP

Recent enabling developments

- High-pressure s-CO₂ receiver technology
- PCM storage concepts (e.g., graphite-impregnated molten salt)
- s-CO₂ power cycle
- Materials advances

Subsystems and research areas

1. Receiver design

2. Heat transfer fluid and circulation subsystem

3. Thermal energy storage subsystem

4. System integration

Receiver Technology

Achievements

Status

- Novel absorber geom.
- 715-750°C HTF out
- 250 bar, CO₂
- 90.6-94.9 % efficient
- Absorber commercialized as HX
- Demonstrated panel on-sun
- Follow-on APOLLO project

- Microchannel design
- 1-1.4 MWt/m² flux
- 720°C, 250 bar CO₂
- Rad., conv loss <5%
- SunShot seedling project
- Micro-lamination fabrication demonstrated

- Internal cellular geom.
- 92-94.5% efficient
- 650°C, 200 bar
- Modeling tools

- Lab-scale experimental model validation
- Project completed

- Continuous solid-state heat pipe system
- Liquid Na or K HTF
- 600-1000°C

- Experimental demo for linear system
- Development underway for power tower applications

- Bladed geometry
- 97% modeled solar absorptivity
- Sandia-funded project
- Demonstrated on-sun, air HTF
- Experiment shows 6% efficiency advantage over flat receiver

7

Receiver development needs

- Adapt existing receiver designs
 - Alternate HTF (if needed)
 - Lower operating pressure, higher temperature
 - Identify likely modes of failure
 - Improve understanding of off-design, transient response
- Co-optimization of heliostat field and receiver
- Mid-scale prototype demonstration
 - Previous work has had limited on-sun testing
- Cycling and fatigue analysis
 - Careful understanding of allowable heat flux, impact of fatigue and creep stress
- Fluid flow design
 - Ensure stability, avoid hot spots

Heat Transfer Fluid and Circulator Subsystem

Indirect configuration introduces a degree of freedom in HTF composition

Related work

- Fossil: Air, ≤30 MWe
 - Considered size of the turbomachine, heat exchangers, casings, ducts, and the external fossil-fired heater
 - Favorable simplicity, conventionality, and cost
- Nuclear: Helium
 - Considered reactor-coolant and power-conversion system
 - Favorable chemical inertness, immunity to radiation effects, cycle compatibility, power scalability

Additional HTF Considerations

Corrosivity

- Helium is chemically inert under proposed conditions
- Air or CO₂ require evaluation
 - Work to date has suggested Haynes 230 as a reasonable selection for CO₂ at 700°C

Cost

Helium more expensive than other choices

A 35 MWt receiver and 96 MWh of storage with a 30% HTF volumetric (void) fraction would require approximately 175-m³ of helium inventory at 60 bar, and would cost about \$77K.

Circulator design

- CO₂ circulator custom-designed, but is readily achievable
- Nuclear industry has explored helium for use in Very High Temperature Reactor (VHTR)

HTF and circulator development needs

- HTF selection and optimization based on cost, parasitic requirements, corrosion
- Methods for reducing transport piping cost
- Circulator turbomachinery selection and design

Thermal Energy Storage Subsystem

- GP pathways allows adoption of lower-cost, higher energy density TES options
- Review indicates PCM based on chloride salts as viable near term, potentially low cost
- Chloride features:
 - Range of blends possible
 - Effective within 150-200K ΔT
- Challenges:
 - Heat transfer into salt
 - Need to form layers of material to maintain temperature profile stability
- Three concepts explored
 - Encapsulated pressurized PCM
 - PCM with embedded tubes
 - Sensible heat particle storage

	Melting	Heat of	Cost
Salt Blend (wt fractions)	Point (C)	Fusion (J/g)	(\$/kg)
NaCl/LiCl (0.34 / 0.66)	554	399	4.6
NaCl/KCl (0.434 / 0.566)	659	417 [?]	0.3
MgCl ₂	714	454	0.4
KCI	771	353	0.4
NaCl	801	482	0.1

Tube-in-Tank PCM TES

- HTF piping penetrates a vessel filled with PCM
- Graphite foam with chloride-salt PCMs
 - Mitigates low conductivity
 - Factor of 12 reduction in piping
 - Maintains a sealed, inert environment to avoid corrosion
 - Minimal PCM interaction with metallic TES system components
- Abengoa Solar: PCM storage offers significant opportunity for cost reduction in CSP systems
- Opportunity for optimization of vessel insulation and heat exchanger design
- Pressure drop within the system must also be carefully investigated

Tube-in-Tank PCM, \$39/kWh-t

Insulation, per vessel, 20

Argonne National Laboratory test latent PCM TES system [https://www.anl.gov/articles/argonne-technology-puts-solar-power-work-all-night-long]

Gas-Phase Receiver System with Particle Storage

TES Development needs

- Determine PCM-embedded piping/heat-exchanger designs to allow for effective heat transfer and minimize pressure drop.
- Identify and characterize the preferred PCM salts for use with a cascaded PCM design
- Model the behavior of a multi-module PCM design to estimate the thermal effectiveness and overall energy/exergy efficiency of the system throughout annual simulations.
- Select and test internal insulation in contact with PCM salt freeze/thaw cycles.
- Select and test heat-exchanger alloy in contact with salt melt.
- Evaluate scalability of TES tube-in-tank system designs; build and test prototypes to demonstrate long-term performance reliability.
- Undertake design of a gas-phase receiver/particle-TES system to detail potential advantages related to performance and risk of other system designs.

15

System Integration

- Understand the implications of integrating PCM TES, GP receiver, power cycle
- Identify control and off-design challenges
- Characterize annual productivity
- Power cycle integration
 - Not a unique challenge to GP technologies
 - Off-design more of an issue for PCM, temperature profile changes with charge state
 - Ambient response more significant than hot side T

System Sizing and Field Design

Example solar field design for 50 MWe turbine, SM 2.5

	Units	Value
Receiver height	M	13.1
Receiver width	M	15.6
Aperture tilt angle	0	-44.0
Tower height	M	160.0
Single heliostat area	m²	36.0
Heliostat focusing type		Ideal
Total heliostat area	m^2	406,296
Simulated heliostat count	-	11,286
Reference simulation	Spring equi	nox at noon
Power incident on field	kW	385,981
Power absorbed by the receiver	kW	262,773
Power absorbed by HTF	kW	250,943
Cosine efficiency	%	90.1
Blocking/shading efficiency	%	98.5
Attenuation efficiency	%	93.4
Heliostat reflectivity and soiling	%	90.3
Image intercept efficiency	%	91.0
Solar-field optical efficiency	%	68.1
Average incident flux	kW/m²	1288.3

Valve Design and Testing

 GP + PCM TES depends on reliable switching valves that can operate in high-temperature/high-pressure situations

Previous work by UW-Madison and Flowserve explores options for regenerative HX

- Considered single-actuating globe valves, 3-way valves, and rotary ball valves
- Selected a valve that is believed to be suitable for their application and are proposing to test the design
- Excepting temperature, GP pathway conditions are less rigorous

Commercial valve options are rated to 550°C and up to 170 bar with 316SS.

System and integration Development needs

- Develop component performance models for both design and off-design conditions
 - Predict thermodynamic fluid states, heat-transfer behavior, and relevant mechanical considerations, and consolidate into a system-level model
- Determine heliostat field layout and flux control methods suitable for GP receivers with a commercially relevant module size
- Select and characterize HTF-to-sCO₂ heat-exchanger technology
- Selection and testing of high-pressure/high-temperature values
 - Assess code status (e.g., ASME B16.34) of alloy choices for hightemperature valves

Summary

Topic area	Needed expertise	Components
Receiver	 (Modeling and/or measurement) Flow control Flux and optical performance Thermal stress and fatigue Thermal loss Performance simulation 	 Absorber Heat shielding, surface coatings Flow distributors and valves Welds and joints Mechanical supports Instrumentation
Thermal storage	 Heat transfer for charge and discharge PCM structure design Materials; salts Salt corrosion Cascaded phase change 	 Gas-to-PCM heat exchanger Gas-to-particle heat exchanger Containment vessel Internal/external insulation Particle conveyor
HTF	 Turbomachinery design High-pressure helium, CO₂, argon, etc. containment and transport Piping, fluid flow 	 Circulator High-temperature valving High-temperature insulation, internal and external
System integration	 Large project integration Controls Operations and dispatch optimization System modeling Heliostat field design and control Cost analysis 	 Gas-to-gas heat primary heat exchanger Hot and cold side TES valves

CSP Gen 3 Roadmap